module Marshal: Marshal
type
extern_flags =
| |
No_sharing |
(* | Don't preserve sharing | *) |
| |
Closures |
(* | Send function closures | *) |
| |
Compat_32 |
(* | Ensure 32-bit compatibility | *) |
The flags to the Marshal.to_*
functions below.
val to_channel : out_channel -> 'a -> extern_flags list -> unit
Marshal.to_channel chan v flags
writes the representation
of v
on channel chan
. The flags
argument is a
possibly empty list of flags that governs the marshaling
behavior with respect to sharing, functional values, and compatibility
between 32- and 64-bit platforms.
If flags
does not contain Marshal.No_sharing
, circularities
and sharing inside the value v
are detected and preserved
in the sequence of bytes produced. In particular, this
guarantees that marshaling always terminates. Sharing
between values marshaled by successive calls to
Marshal.to_channel
is neither detected nor preserved, though.
If flags
contains Marshal.No_sharing
, sharing is ignored.
This results in faster marshaling if v
contains no shared
substructures, but may cause slower marshaling and larger
byte representations if v
actually contains sharing,
or even non-termination if v
contains cycles.
If flags
does not contain Marshal.Closures
, marshaling fails
when it encounters a functional value inside v
: only 'pure' data
structures, containing neither functions nor objects, can safely be
transmitted between different programs. If flags
contains
Marshal.Closures
, functional values will be marshaled as a the
position in the code of the program together with the values
corresponding to the free variables captured in the closure. In
this case, the output of marshaling can only be read back in
processes that run exactly the same program, with exactly the same
compiled code. (This is checked at un-marshaling time, using an MD5
digest of the code transmitted along with the code position.)
The exact definition of which free variables are captured in a closure is not specified and can vary between bytecode and native code (and according to optimization flags). In particular, a function value accessing a global reference may or may not include the reference in its closure. If it does, unmarshaling the corresponding closure will create a new reference, different from the global one.
If flags
contains Marshal.Compat_32
, marshaling fails when
it encounters an integer value outside the range -2
30
, 2
30
-1
of integers that are representable on a 32-bit platform. This
ensures that marshaled data generated on a 64-bit platform can be
safely read back on a 32-bit platform. If flags
does not
contain Marshal.Compat_32
, integer values outside the
range -2
30
, 2
30
-1
are marshaled, and can be read back on
a 64-bit platform, but will cause an error at un-marshaling time
when read back on a 32-bit platform. The Mashal.Compat_32
flag
only matters when marshaling is performed on a 64-bit platform;
it has no effect if marshaling is performed on a 32-bit platform.
Failure
if chan
is not in binary mode.val to_bytes : 'a -> extern_flags list -> bytes
Marshal.to_bytes v flags
returns a byte sequence containing
the representation of v
.
The flags
argument has the same meaning as for
Marshal.to_channel
.
val to_string : 'a -> extern_flags list -> string
Same as to_bytes
but return the result as a string instead of
a byte sequence.
val to_buffer : bytes -> int -> int -> 'a -> extern_flags list -> int
Marshal.to_buffer buff ofs len v flags
marshals the value v
,
storing its byte representation in the sequence buff
,
starting at index ofs
, and writing at most
len
bytes. It returns the number of bytes
actually written to the sequence. If the byte representation
of v
does not fit in len
characters, the exception Failure
is raised.
val from_channel : in_channel -> 'a
Marshal.from_channel chan
reads from channel chan
the
byte representation of a structured value, as produced by
one of the Marshal.to_*
functions, and reconstructs and
returns the corresponding value.
End_of_file
if chan
is already at the end of the file.Failure
if the end of the file is reached during
unmarshalling itself or if chan
is not in binary mode.val from_bytes : bytes -> int -> 'a
Marshal.from_bytes buff ofs
unmarshals a structured value
like Marshal.from_channel
does, except that the byte
representation is not read from a channel, but taken from
the byte sequence buff
, starting at position ofs
.
The byte sequence is not mutated.
val from_string : string -> int -> 'a
Same as from_bytes
but take a string as argument instead of a
byte sequence.
val header_size : int
The bytes representing a marshaled value are composed of
a fixed-size header and a variable-sized data part,
whose size can be determined from the header.
Marshal.header_size
is the size, in bytes, of the header.
Marshal.data_size
buff ofs
is the size, in bytes,
of the data part, assuming a valid header is stored in
buff
starting at position ofs
.
Finally, Marshal.total_size
buff ofs
is the total size,
in bytes, of the marshaled value.
Both Marshal.data_size
and Marshal.total_size
raise Failure
if buff
, ofs
does not contain a valid header.
To read the byte representation of a marshaled value into
a byte sequence, the program needs to read first
Marshal.header_size
bytes into the sequence,
then determine the length of the remainder of the
representation using Marshal.data_size
,
make sure the sequence is large enough to hold the remaining
data, then read it, and finally call Marshal.from_bytes
to unmarshal the value.
val data_size : bytes -> int -> int
See Marshal.header_size
.
val total_size : bytes -> int -> int
See Marshal.header_size
.
Care must be taken when marshaling a mutable value that may be modified by a different domain. Mutating a value that is being marshaled (i.e., turned into a sequence of bytes) is a programming error and might result in suprising values (when unmarshaling) due to tearing, since marshaling involves byte-per-byte copy.