package core

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

Boolean expressions.

A blang is a boolean expression built up by applying the usual boolean operations to properties that evaluate to true or false in some context.

Usage

For example, imagine writing a config file for an application that filters a stream of integers. Your goal is to keep only those integers that are multiples of either -3 or 5. Using Blang for this task, the code might look like:

module Property = struct
  type t =
    | Multiple_of of int
    | Positive
    | Negative
  [@@deriving sexp]

  let eval t num =
    match t with
    | Multiple_of n -> num % n = 0
    | Positive      -> num > 0
    | Negative      -> num < 0
end

type config = {
  keep : Property.t Blang.t;
} [@@deriving sexp]

let config = {
  keep =
    Blang.t_of_sexp
      Property.t_of_sexp
      (Sexp.of_string
         "(or (and negative (multiple_of 3)) (and positive (multiple_of 5)))";
}

let keep config num : bool =
  Blang.eval config.keep (fun p -> Property.eval p num)

Note how positive and negative and multiple_of become operators in a small, newly-defined boolean expression language that allows you to write statements like (and negative (multiple_of 3)).

Blang sexp syntax

The blang sexp syntax is almost exactly the derived one, except that:

1. Base properties are not marked explicitly. Thus, if your base property type has elements FOO, BAR, etc., then you could write the following Blang s-expressions:

        FOO
        (and FOO BAR)
        (if FOO BAR BAZ)

and so on. Note that this gets in the way of using the blang "keywords" in your value language.

2. And and Or take a variable number of arguments, so that one can (and probably should) write

(and FOO BAR BAZ QUX)

instead of

(and FOO (and BAR (and BAZ QUX)))

If you want to see the derived sexp, use Raw.sexp_of_t.

type +'a t = private
  1. | True
  2. | False
  3. | And of 'a t * 'a t
  4. | Or of 'a t * 'a t
  5. | Not of 'a t
  6. | If of 'a t * 'a t * 'a t
  7. | Base of 'a

Note that the sexps are not directly inferred from the type below -- there are lots of fancy shortcuts. Also, the sexps for 'a must not look anything like blang sexps. Otherwise t_of_sexp will fail. The directly inferred sexps are available via Raw.sexp_of_t.

include Bin_prot.Binable.S_local1 with type +'a t := 'a t
include Bin_prot.Binable.S1 with type +'a t := 'a t
val bin_shape_t : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_t : ('a, 'a t) Bin_prot.Size.sizer1
val bin_write_t : ('a, 'a t) Bin_prot.Write.writer1
val bin_read_t : ('a, 'a t) Bin_prot.Read.reader1
val __bin_read_t__ : ('a, int -> 'a t) Bin_prot.Read.reader1
val bin_writer_t : ('a, 'a t) Bin_prot.Type_class.S1.writer
val bin_reader_t : ('a, 'a t) Bin_prot.Type_class.S1.reader
val bin_t : ('a, 'a t) Bin_prot.Type_class.S1.t
val bin_size_t__local : ('a, 'a t) Bin_prot.Size.sizer_local1
val bin_write_t__local : ('a, 'a t) Bin_prot.Write.writer_local1
include Ppx_compare_lib.Comparable.S1 with type +'a t := 'a t
val compare : 'a Base__Ppx_compare_lib.compare -> 'a t Base__Ppx_compare_lib.compare
include Ppx_compare_lib.Equal.S1 with type +'a t := 'a t
val equal : 'a Base__Ppx_compare_lib.equal -> 'a t Base__Ppx_compare_lib.equal
include Ppx_hash_lib.Hashable.S1 with type +'a t := 'a t
val hash_fold_t : 'a Base__Ppx_hash_lib.hash_fold -> 'a t Base__Ppx_hash_lib.hash_fold
include Sexplib0.Sexpable.S1 with type +'a t := 'a t
val t_of_sexp : (Sexplib0__.Sexp.t -> 'a) -> Sexplib0__.Sexp.t -> 'a t
val sexp_of_t : ('a -> Sexplib0__.Sexp.t) -> 'a t -> Sexplib0__.Sexp.t
val t_sexp_grammar : 'a Sexplib0.Sexp_grammar.t -> 'a t Sexplib0.Sexp_grammar.t
module Raw : sig ... end

Raw provides the automatically derived sexp_of_t, useful in debugging the actual structure of the blang.

Smart constructors that simplify away constants whenever possible

module type Constructors = sig ... end
include Constructors
val base : 'a -> 'a t
val true_ : _ t
val false_ : _ t
val constant : Base.Bool.t -> _ t

function true -> true_ | false -> false_

val not_ : 'a t -> 'a t
val and_ : 'a t Base.List.t -> 'a t

n-ary And

val or_ : 'a t Base.List.t -> 'a t

n-ary Or

val if_ : 'a t -> 'a t -> 'a t -> 'a t

if_ if then else

module O : sig ... end
val constant_value : 'a t -> Base.Bool.t Base.Option.t

constant_value t = Some b iff t = constant b

The following two functions are useful when one wants to pretend that 'a t has constructors And and Or of type 'a t list -> 'a t. The pattern of use is

match t with
| And (_, _) as t -> let ts = gather_conjuncts t in ...
| Or (_, _) as t -> let ts = gather_disjuncts t in ...
| ...

or, in case you also want to handle True (resp. False) as a special case of conjunction (disjunction)

match t with
| True | And (_, _) as t -> let ts = gather_conjuncts t in ...
| False | Or (_, _) as t -> let ts = gather_disjuncts t in ...
| ...
val gather_conjuncts : 'a t -> 'a t Base.List.t

gather_conjuncts t gathers up all toplevel conjuncts in t. For example,

  • gather_conjuncts (and_ ts) = ts
  • gather_conjuncts (And (t1, t2)) = gather_conjuncts t1 @ gather_conjuncts t2
  • gather_conjuncts True = []
  • gather_conjuncts t = [t] when t matches neither And (_, _) nor True
val gather_disjuncts : 'a t -> 'a t Base.List.t

gather_disjuncts t gathers up all toplevel disjuncts in t. For example,

  • gather_disjuncts (or_ ts) = ts
  • gather_disjuncts (Or (t1, t2)) = gather_disjuncts t1 @ gather_disjuncts t2
  • gather_disjuncts False = []
  • gather_disjuncts t = [t] when t matches neither Or (_, _) nor False
val mem : 'a t -> 'a -> equal:('a -> 'a -> bool) -> bool
val length : 'a t -> int
val is_empty : 'a t -> bool
val iter : 'a t -> f:('a -> unit) -> unit
val fold : 'a t -> init:'acc -> f:('acc -> 'a -> 'acc) -> 'acc
val fold_result : 'a t -> init:'acc -> f:('acc -> 'a -> ('acc, 'e) Base__.Result.t) -> ('acc, 'e) Base__.Result.t
val fold_until : 'a t -> init:'acc -> f:('acc -> 'a -> ('acc, 'final) Base__Container_intf.Continue_or_stop.t) -> finish:('acc -> 'final) -> 'final
val exists : 'a t -> f:('a -> bool) -> bool
val for_all : 'a t -> f:('a -> bool) -> bool
val count : 'a t -> f:('a -> bool) -> int
val sum : (module Base__Container_intf.Summable with type t = 'sum) -> 'a t -> f:('a -> 'sum) -> 'sum
val find : 'a t -> f:('a -> bool) -> 'a option
val find_map : 'a t -> f:('a -> 'b option) -> 'b option
val to_list : 'a t -> 'a list
val to_array : 'a t -> 'a array
val min_elt : 'a t -> compare:('a -> 'a -> int) -> 'a option
val max_elt : 'a t -> compare:('a -> 'a -> int) -> 'a option
include Quickcheckable.S1 with type 'a t := 'a t
val quickcheck_generator : 'a Base_quickcheck.Generator.t -> 'a t Base_quickcheck.Generator.t
val quickcheck_observer : 'a Base_quickcheck.Observer.t -> 'a t Base_quickcheck.Observer.t
val quickcheck_shrinker : 'a Base_quickcheck.Shrinker.t -> 'a t Base_quickcheck.Shrinker.t

Blang.t sports a substitution monad:

  • return v is Base v (think of v as a variable)
  • bind t f replaces every Base v in t with f v (think of v as a variable and f as specifying the term to substitute for each variable)

Note: bind t f does short-circuiting, so f may not be called on every variable in t.

val (>>=) : 'a t -> ('a -> 'b t) -> 'b t
val (>>|) : 'a t -> ('a -> 'b) -> 'b t
module Monad_infix : sig ... end
val bind : 'a t -> f:('a -> 'b t) -> 'b t
val return : 'a -> 'a t
val map : 'a t -> f:('a -> 'b) -> 'b t
val join : 'a t t -> 'a t
val ignore_m : 'a t -> unit t
val all : 'a t list -> 'a list t
val all_unit : unit t list -> unit t
module Let_syntax : sig ... end
val values : 'a t -> 'a Base.List.t

values t forms the list containing every v for which Base v is a subexpression of t

val eval : 'a t -> ('a -> Base.Bool.t) -> Base.Bool.t

eval t f evaluates the proposition t relative to an environment f that assigns truth values to base propositions.

val eval_set : universe:('elt, 'comparator) Set.t Lazy.t -> ('a -> ('elt, 'comparator) Set.t) -> 'a t -> ('elt, 'comparator) Set.t

eval_set ~universe set_of_base expression returns the subset of elements e in universe that satisfy eval expression (fun base -> Set.mem (set_of_base base) e).

eval_set assumes, but does not verify, that set_of_base always returns a subset of universe. If this doesn't hold, then eval_set's result may contain elements not in universe.

And set1 set2 represents the elements that are both in set1 and set2, thus in the intersection of the two sets. Symmetrically, Or set1 set2 represents the union of set1 and set2.

val specialize : 'a t -> ('a -> [ `Known of Base.Bool.t | `Unknown ]) -> 'a t

specialize t f partially evaluates t according to a perhaps-incomplete assignment f of the values of base propositions. The following laws (at least partially) characterize its behavior.

  • specialize t (fun _ -> `Unknown) = t
  • specialize t (fun x -> `Known (f x)) = constant (eval t f)
  • List.for_all (values (specialize t g)) ~f:(fun x -> g x = `Unknown)
  • if
      List.for_all (values t) ~f:(fun x ->
        match g x with
        | `Known b -> b = f x
        | `Unknown -> true)
    then
      eval t f = eval (specialize t g) f
module type Monadic = sig ... end
module For_monad (M : sig ... end) : Monadic with module M := M

Generalizes some of the blang operations above to work in a monad.

val invariant : 'a t -> Base.Unit.t
module Stable : sig ... end
OCaml

Innovation. Community. Security.