Framework for interoperable effects based concurrency.
This is essentially an interface between schedulers and other elements that need to communicate with a scheduler. Perhaps an enlightening analogy is to say that this is the POSIX of effects based schedulers.
ℹ️ Picos, i.e. this module, is not intended to be an application level concurrent programming library or framework. If you are looking for a library or framework for programming concurrent applications, then this module is probably not what you are looking for.
The architecture of Picos
The core concepts of Picos are
Trigger
— ability to await for a signal,Computation
— a cancelable computation, andFiber
— an independent thread of execution,
that are implemented in terms of the effects
that can be used to implement many kinds of higher level concurrent programming facilities.
Understanding cancelation
A central idea of Picos is to provide a collection of building blocks for parallelism safe cancelation. Consider the following characteristic example:
Mutex.protect mutex begin fun () ->
while true do
Condition.wait condition mutex
done
end
Assume that the fiber executing the above computation might be canceled, at any point, by another fiber running in parallel. How could that be done both effectively and safely?
- To be effective, cancelation should take effect as soon as possible. In this case, cancelation should take effect even during the
Mutex.lock
inside Mutex.protect
and the Condition.wait
operations when the fiber might be in a suspended state awaiting for a signal to continue. - To be safe, cancelation should not leave the program in an invalid state or cause the program to leak memory. In this case, the ownership of the mutex must be transferred to the next fiber or be left unlocked and no references to unused objects must be left in the mutex or the condition variable.
Picos allows Mutex
and Condition
to be implemented such that cancelation may safely take effect at or during calls to Mutex.lock
and Condition.wait
.
Cancelation in Picos
The Fiber
concept in Picos corresponds to an independent thread of execution. A fiber may explicitly forbid or permit the scheduler from propagating cancelation to it. This is important for the implementation of some key concurrent abstractions such as condition variables, where it is necessary to forbid cancelation when the associated mutex is reacquired.
Each fiber has an associated Computation
at all times. A computation is something that needs to be completed either by returning a value through it or by canceling it with an exception. To cancel a fiber one cancels the computation associated with the fiber or any computation whose cancelation is propagated to the computation associated with the fiber.
Before a computation has been completed, it is also possible to attach a Trigger
to the computation and also to later detach the trigger from the computation. A trigger attached to a computation is signaled as the computation is completed.
The Trigger
concept in Picos is what allows a fiber to be suspended and later resumed. A fiber can create a trigger, add it to any shared data structure(s), and await for the trigger to be signaled. The await operation, which is implemented by the scheduler, also, in case the fiber permits cancelation, attaches the trigger to the computation of the fiber when it suspends the fiber. This is what allows a fiber to be resumed via cancelation of the computation.
The return value of await tells whether the fiber was resumed normally or due to being canceled and the caller then needs to properly handle either case. After being canceled, depending on the concurrent abstraction being implemented, the caller might need to e.g. remove references to the trigger from the shared data structures, cancel asynchronous IO operations, or transfer ownership of a mutex to the next fiber in the queue of the mutex.
Modules reference
For the examples in this document, we first open the Picos
module
open Picos
as well as a simple helper for cleaning up resources
open Picos_structured.Finally
and define a simple scheduler on OCaml 4
let run main =
Picos_threaded.run ~forbid:false main
using the basic thread based scheduler and on OCaml 5
let run main =
Picos_fifos.run ~forbid:false main
using the basic effects based scheduler that come with Picos as samples.
Auxiliary modules
Exceptions with backtraces.
Core modules
Please note that the example code snippets in this documentation may e.g. use the Domain
and Unix
modules in order to be able to describe Picos concepts in isolation in the absence of a Picos compatible scheduler.
Ability to await for a signal.
A cancelable computation.
module Fiber : sig ... end
An independent thread of execution.
Handler for the effects based operations of Picos for OCaml 4.