package ppx_minidebug

  1. Overview
  2. Docs
Debug logs for selected functions and let-bindings

Install

Dune Dependency

Authors

Maintainers

Sources

0.6.2.tar.gz
md5=4131798b8a76999fde8765303938766d
sha512=7cd38ded13b5f79d859361d22e34587286a004a0605d2cd0430bc0bb703c0e22e9ec63260b9b9619562ed731b3f933631365e9240a1801e72cb1e0cdb746f7fe

README.md.html

ppx_minidebug

ppx_minidebug: A poor man's version of ppx_debug

ppx_minidebug traces selected code if it has type annotations. ppx_minidebug offers three ways of instrumenting the code: %debug_pp and %debug_show based on deriving.show, and %debug_sexp based on sexplib0 and ppx_sexp_conv. The syntax extension expects a module Debug_runtime in the scope. The ppx_minidebug.runtime library (part of the ppx_minidebug package) offers three ways of logging the traces, as functors generating Debug_runtime modules given an output channel (e.g. for a file).

Take a look at ppx_debug which is significantly more powerful!

See also the generated documentation.

Try opam install ppx_minidebug to install from the opam repository. To install ppx_minidebug from sources, download it with e.g. gh repo clone lukstafi/ppx_minidebug; cd ppx_minidebug and then either dune install or opam install ..

To use ppx_minidebug in a Dune project, add/modify these stanzas: (preprocess (pps ... ppx_minidebug)), and (libraries ... ppx_minidebug.runtime).

Pp_format-based traces

Define a Debug_runtime using the Pp_format functor. The helper functor Debug_ch opens a file for appending. E.g. either module Debug_runtime = Minidebug_runtime.Pp_format(struct let debug_ch = stdout let time_tagged = true end), or:

module Debug_runtime =
  Minidebug_runtime.Pp_format((val Minidebug_runtime.debug_ch "path/to/debugger_format.log"))

The logged traces will be indented using OCaml's Format module. Truncated example (using %debug_pp):

BEGIN DEBUG SESSION at time 2023-03-02 22:20:39.302 +01:00
"test/test_debug_pp.ml":4:17-4:71 at time 2023-03-02 22:20:39.302 +01:00: bar
x = { Test_debug_pp.first = 7; second = 42 }  bar = 336  
"test/test_debug_pp.ml":8:17-9:89 at time 2023-03-02 22:20:39.302 +01:00: baz
x = { Test_debug_pp.first = 7; second = 42 }  baz = 339  
"test/test_debug_pp.ml":12:22-18:9 at time 2023-03-02 22:20:39.302 +01:00: loop
depth = 0  x = { Test_debug_pp.first = 7; second = 42 }  "test/test_debug_pp.ml":16:8: 
  "test/test_debug_pp.ml":12:22-18:9 at time 2023-03-02 22:20:39.302 +01:00: loop
    depth = 1  x = { Test_debug_pp.first = 41; second = 9 }  "test/test_debug_pp.ml":16:8: 
      "test/test_debug_pp.ml":12:22-18:9 at time 2023-03-02 22:20:39.302 +01:00: loop
        depth = 2  x = { Test_debug_pp.first = 8; second = 43 }  "test/test_debug_pp.ml":16:8: 
          "test/test_debug_pp.ml":12:22-18:9 at time 2023-03-02 22:20:39.302 +01:00: loop
            depth = 3  x = { Test_debug_pp.first = 42; second = 10 } 
              "test/test_debug_pp.ml":16:8: 
              "test/test_debug_pp.ml":12:22-18:9 at time 2023-03-02 22:20:39.302 +01:00: loop

PrintBox-based traces

This runtime has the most features. Here we define a Debug_runtime either using the entrypoint module Debug_runtime = (val Minidebug_runtime.debug ()), or using the PrintBox functor, e.g.:

module Debug_runtime =
  Minidebug_runtime.PrintBox((val Minidebug_runtime.debug_ch "path/to/debugger_printbox.log" end))

The logged traces will be pretty-printed as trees using the printbox package. Truncated example (using %debug_sexp):

BEGIN DEBUG SESSION at time 2023-03-02 22:20:39.305 +01:00
"test/test_debug_sexp.ml":4:19-6:15 at time
2023-03-02 22:20:39.305 +01:00: foo
├─x = 7
└─foo = (7 8 16)
"test/test_debug_sexp.ml":11:19-11:73 at time
2023-03-02 22:20:39.305 +01:00: bar
├─x = ((first 7) (second 42))
└─bar = 336
"test/test_debug_sexp.ml":14:19-15:67 at time
2023-03-02 22:20:39.305 +01:00: baz
├─x = ((first 7) (second 42))
└─baz = 339
"test/test_debug_sexp.ml":18:24-24:9 at time
2023-03-02 22:20:39.305 +01:00: loop
├─depth = 0
├─x = ((first 7) (second 42))
├─"test/test_debug_sexp.ml":22:8: 
│ ├─"test/test_debug_sexp.ml":18:24-24:9 at time
│ │ 2023-03-02 22:20:39.305 +01:00: loop
│ │ ├─depth = 1
│ │ ├─x = ((first 41) (second 9))
│ │ ├─"test/test_debug_sexp.ml":22:8: 
│ │ │ ├─"test/test_debug_sexp.ml":18:24-24:9 at time
│ │ │ │ 2023-03-02 22:20:39.305 +01:00: loop
│ │ │ │ ├─depth = 2
│ │ │ │ ├─x = ((first 8) (second 43))
│ │ │ │ ├─"test/test_debug_sexp.ml":18:24-24:9 at time
│ │ │ │ │ 2023-03-02 22:20:39.305 +01:00: loop
│ │ │ │ │ ├─depth = 3
│ │ │ │ │ ├─x = ((first 44) (second 4))

This runtime also allows disabling the logging of specified subtrees, when the output is irrelevant or would be a distraction. The test suite example:

  let%debug_this_show rec fixpoint_changes (x: int): int =
    let z: int = (x - 1) / 2 in
    (* The call [x = 2] is not printed because it is a descendant of
       the no-debug call [x = 4]. *)
    Debug_runtime.no_debug_if (x <> 6 && x <> 2 && (z + 1) * 2 = x);
    if x <= 0 then 0 else z + fixpoint_changes (z + x / 2) in
  print_endline @@ Int.to_string @@ fixpoint_changes 7

leads to:

  "test/test_expect_test.ml":96:43-100:58: fixpoint_changes
  ├─x = 7
  ├─"test/test_expect_test.ml":97:8:
  │ └─z = 3
  ├─"test/test_expect_test.ml":96:43-100:58: fixpoint_changes
  │ ├─x = 6
  │ ├─"test/test_expect_test.ml":97:8:
  │ │ └─z = 2
  │ ├─"test/test_expect_test.ml":96:43-100:58: fixpoint_changes
  │ │ ├─x = 5
  │ │ ├─"test/test_expect_test.ml":97:8:
  │ │ │ └─z = 2
  │ │ └─fixpoint_changes = 4
  │ └─fixpoint_changes = 6
  └─fixpoint_changes = 9
  9
Traces in HTML as collapsible trees

The PrintBox runtime can be configured to output logs using HTML. The logs then become collapsible trees, so that you can expose only the relevant information when debugging. Example configuration:

module Debug_runtime =
  Minidebug_runtime.PrintBox ((val Minidebug_runtime.debug_ch "debug.html"))
let () = Debug_runtime.to_html := true
let () = Debug_runtime.boxify_sexp_from_size := 50

Here we also convert the logged sexp values (with at least 50 atoms) to trees. Example result:

PrintBox creating helpers with defaults: debug and debug_html

The above configuration is more concisely just:

module Debug_runtime = (val Minidebug_runtime.debug_html "debug.html")

Similarly, debug returns a PrintBox module, which by default logs to stdout:

module Debug_runtime = (val Minidebug_runtime.debug ())

Breaking infinite recursion with max_nesting_depth and looping with max_num_children; Flushing-based traces

The PrintBox and Pp_format backends only produce any output when a top-level log entry gets closed. This makes it harder to debug infinite loops and especially infinite recursion. The setting max_nesting_depth terminates a computation when the given log nesting is exceeded. For example:

module Debug_runtime = (val Minidebug_runtime.debug ~max_nesting_depth:5 ())

let%debug_this_show rec loop_exceeded (x : int) : int =
  let z : int = (x - 1) / 2 in
  if x <= 0 then 0 else z + loop_exceeded (z + (x / 2))

let () =
  try print_endline @@ Int.to_string @@ loop_exceeded 7
  with _ -> print_endline "Raised exception."

Similarly, max_num_children raises a failure when the given number of logs with the same parent is exceeded. For example:

module Debug_runtime = (val Minidebug_runtime.debug ~max_num_children:50 ())

let%debug_this_show _bar : unit =
  for i = 0 to 100 do
    let _baz : int = i * 2 in
    ()
  done

If that is insufficient, you can define a Debug_runtime using the Flushing functor. E.g. either module Debug_runtime = (val Minidebug_runtime.debug_flushing ()), or:

module Debug_runtime =
  Minidebug_runtime.Flushing((val Minidebug_runtime.debug_ch "path/to/debugger_flushing.log"))

The logged traces are still indented, but if the values to print are multi-line, their formatting might be messy. The benefit of Flushing traces is that the output is flushed line-at-a-time, so no output should be lost if the traced program crashes. But in recent versions of ppx_minidebug, uncaught exceptions no longer break logging in the PrintBox and Pp_format runtimes. The indentation is also smaller (half of PrintBox). Truncated example (using %debug_show):

BEGIN DEBUG SESSION at time 2023-03-02 23:19:40.763950 +01:00
2023-03-02 23:19:40.763980 +01:00 - foo begin "test/test_debug_show.ml":3:19-5:15
 x = 7
 foo = [7; 8; 16]
2023-03-02 23:19:40.764000 +01:00 - foo end
2023-03-02 23:19:40.764011 +01:00 - bar begin "test/test_debug_show.ml":10:19-10:73
 x = { Test_debug_show.first = 7; second = 42 }
 bar = 336
2023-03-02 23:19:40.764028 +01:00 - bar end
2023-03-02 23:19:40.764034 +01:00 - baz begin "test/test_debug_show.ml":13:19-14:67
 x = { Test_debug_show.first = 7; second = 42 }
 baz = 339
2023-03-02 23:19:40.764048 +01:00 - baz end
2023-03-02 23:19:40.764054 +01:00 - loop begin "test/test_debug_show.ml":17:24-23:9
 depth = 0
 x = { Test_debug_show.first = 7; second = 42 }
  "test/test_debug_show.ml":21:8: 
  2023-03-02 23:19:40.764073 +01:00 - loop begin "test/test_debug_show.ml":17:24-23:9
   depth = 1
   x = { Test_debug_show.first = 41; second = 9 }
    "test/test_debug_show.ml":21:8: 
    2023-03-02 23:19:40.764094 +01:00 - loop begin "test/test_debug_show.ml":17:24-23:9
     depth = 2
     x = { Test_debug_show.first = 8; second = 43 }
      "test/test_debug_show.ml":21:8: 
      2023-03-02 23:19:40.764109 +01:00 - loop begin "test/test_debug_show.ml":17:24-23:9
       depth = 3
       x = { Test_debug_show.first = 42; second = 10 }
        "test/test_debug_show.ml":21:8: 

Usage

To trace a function, you have to type-annotate the function result. To trace an argument of a traced function, or a let-binding, you need to type-annotate it. You can control how much gets logged by adding or removing type annotations.

Tracing only happens in explicitly marked scopes, using the extension points: %debug_pp, %debug_this_pp, %debug_show, %debug_this_show (based on printing functionality provided by deriving.show), %debug_sexp, %debug_this_sexp (using functionality provided by sexplib0 and ppx_sexp_conv). See examples in the test directory.

The %debug_this variants are intended only for let-bindings: let%debug_this v: t = compute value in body will trace v and the type-annotated bindings and functions inside compute value, but it will not trace body.

To properly trace in concurrent settings, ensure that different threads use different log channels. For example, you can bind Debug_runtime locally: let module Debug_runtime = Minidebug_runtime.Flushing(struct let debug_ch = thread_specific_ch let time_tagged = true end) in ... In particular, when performing dune runtest in the ppx_minidebug directory, the test_debug_n and the test_debug_n_expected pairs of programs will interfere with each other, unless you adjust the log file names in them.

The PrintBox logs are the prettiest, I could not get the Pp_format-functor-based output look the way I wanted. The Flushing logs enable Log Inspector (sub-millisecond) flame graphs. One should be able to get other logging styles to work with Log Inspector by configuring its regexp patterns.

ppx_minidebug can be installed using opam. ppx_minidebug.runtime depends on printbox, ptime, sexplib0.

VS Code suggestions

Add / remove type annotations and visit files using VOCaml

VOCaml helpers for coding in OCaml provide commands to add and remove annotations on selected bindings. They can be used to introduce logging, tune it, and cleanup afterward. It also has a command to populate the Quick Open dialog with a file name and location from a line under cursor. It can be used to jump to the source code from a log file.

Note that you can add and remove type annotations using VSCode OCaml Platform's code actions, and the Find and Transform suggestion below is a more flexible go-to-file solution -- so VOCaml is somewhat redundant. But, it is still valuable: (1) it annotates multiple let-bindings at once in a selection, and (2) it annotates the argument types and the return type of a function (as required by ppx_debug) when invoked on a function definition.

Visualize the flame graph using Log Inspector

Log Inspector (sub-millisecond)'s main feature is visualizing timestamped logs as flame graphs. To invoke it in VS Code, go to a Minidebug_runtime.Flushing-style logs file, press crtl+shift+P, and execute the command "Log Inspector: Draw". Example effect:

The sub-millisecond functionality is now upstreamed to Log Inspector.

Go to file location using Find and Transform

This will expand your general-purpose VS Code toolbox!

Find and Transform is a powerful VS Code extension. I put the following in my keybindings.json file (command: Open Keyboard Shortcuts (JSON)):

  {
    "key": "alt+q",
    "command": "findInCurrentFile",
    "args": {
      "description": "Open file at cursor",
      "find": "\"([^\"]+)\":([0-9]+)",
      "run": [
        "$${",
          "const pos = new vscode.Position($2, 0);",
          "const range = new vscode.Range(pos, pos);",
          "const options = {selection: range};",
          "const wsFolderUri = vscode.workspace.workspaceFolders[0].uri;",
          "const uri = await vscode.Uri.joinPath(wsFolderUri, '$1');",
          "await vscode.commands.executeCommand('vscode.open', uri, options);",
          
          // "await vscode.commands.executeCommand('workbench.action.quickOpen', `$1:$2`);",
        "}$$",
      ],
      "isRegex": true,
      "restrictFind": "line",
    }
  }

Then, pressing alt+q will go to the file directly, assuming the logs contain the full relative path.

OCaml

Innovation. Community. Security.