package prbnmcn-clustering
Clustering library
Install
Dune Dependency
Authors
Maintainers
Sources
0.0.1.tar.gz
md5=a32385f08db7e94de4f167cf87b03df0
sha512=e0c9c281ccdcd5a10ed3ff6e74362aab10c44767fa6edc20f4f55e67843a5eb2efcbff5cb23052bfc3df752876151585ee4c76090f7b1fae77990f4acee81b69
README.md.html
prbnmcn-clustering
This library implements the following clustering algorithms:
K-means
K-medoids (using either 'Partition Around Medoids' or the 'Voronoi Iteration' algorithms)
Agglomerative clustering (yielding dendrograms)
A basic example can be found in the test
subdirectory.
Multi-start routines are also available to pick the best out of n
initial clusterings. At the time of writing, the implementation is entirely sequential.
TODOs
many low-hanging fruits for optimization
implement parallel multi-start routine when multicore lands
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>